The functional analysis of insulator interactions in the Drosophila embryo.
نویسندگان
چکیده
Chromatin boundaries or insulators modulate enhancer-promoter interactions in complex genetic loci. However, the mechanism underlying insulator activity is not known. Previous studies showed that the activity of the Drosophila suHw insulator is abolished by the tandem arrangement (pairing) of the insulator elements, suggesting that interactions between insulators or like elements may be involved in their enhancer-blocking mechanism. To test whether such phenomenon reflects a general property of chromatin insulators, we tested the effect of pairing on enhancer-blocking activity of 11 homologous and heterologous insulator combinations using suHw, scs, or SF1 insulators. We found that, unlike the homologous pairing of suHw, the heterologous combinations of suHw with other insulators do not reduce their enhancer-blocking activity. Rather, paired insulators exhibit a higher level of enhancer-blocking activity than either single insulator alone, suggesting that they can function independently or additively. Furthermore, the analyses of two additional chromatin boundaries, scs and SF1, in homologous or heterologous pairing with other boundary elements, also showed no reduction but rather enhancement of insulator activity. We propose that diverse mechanisms may underlie insulator activity, and selective interactions among insulators could influence their function as well as the formations of independent chromatin domains.
منابع مشابه
I-34: Interactorme of Human Embryo Implan Implantation:Pathways,Networks
Background: A prerequisite for successful embryo implantation is adequate preparation of receptive endometrium and the establishment and maintenance of a viable embryo. The success of implantation further relies upon a two-way dialogue between the embryo and uterus. However, molecular bases of these preimplantation and implantation processes in humans are not well known. Materials and Methods: ...
متن کاملA Comprehensive Map of Insulator Elements for the Drosophila Genome
Insulators are DNA sequences that control the interactions among genomic regulatory elements and act as chromatin boundaries. A thorough understanding of their location and function is necessary to address the complexities of metazoan gene regulation. We studied by ChIP-chip the genome-wide binding sites of 6 insulator-associated proteins-dCTCF, CP190, BEAF-32, Su(Hw), Mod(mdg4), and GAF-to obt...
متن کاملThe gypsy insulator can function as a promoter-specific silencer in the Drosophila embryo.
The Drosophila gypsy retrotransposon disrupts gene activity by blocking the interactions of distal enhancers with target promoters. This enhancer-blocking activity is mediated by a 340 bp insulator DNA within gypsy. The insulator contains a cluster of binding sites for a zinc finger protein, suppressor of Hairy wing [su(Hw)]. Recent studies have shown that a second protein, mod(mdg4), is also i...
متن کاملA Model System in S2 Cells to Test the Functional Activities of Drosophila Insulators
Insulators are a special class of regulatory elements that can regulate interactions between enhancers and promoters in the genome of high eukaryotes. To date, the mechanisms of insulator action remain unknown, which is primarily related to the lack of convenient model systems. We suggested studying a model system which is based on transient expression of a plasmid with an enhancer of the copia...
متن کاملConvergence of topological domain boundaries, insulators, and polytene interbands revealed by high-resolution mapping of chromatin contacts in the early Drosophila melanogaster embryo
High-throughput assays of three-dimensional interactions of chromosomes have shed considerable light on the structure of animal chromatin. Despite this progress, the precise physical nature of observed structures and the forces that govern their establishment remain poorly understood. Here we present high resolution Hi-C data from early Drosophila embryos. We demonstrate that boundaries between...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 9 شماره
صفحات -
تاریخ انتشار 2003